Today on the
Oregon Coast

Oregon coast AVHRR SST

Quick Links

Seminar Schedule


glider operations

Accepting Applications for Fall 2020

CEOAS Physical Oceanography is seeking students with a strong background in physics, mathematics, or applied sciences to study with us. Research areas include:

  • turbulence and ocean mixing,
  • internal waves and nonlinear dynamics
  • coastal processes
  • climate and large scale dynamics
  • physical/biological interactions
  • numerical modelling and techniques
  • instrumentation development
  • ocean observations all over the world (examples include Hawaii, Chile, Spain, Taiwan, NJ, NC, WA and of course Oregon and more)
Most students accepted for study receive Graduate Research Assistantships (GRA) covering tuition and living expenses. Numerous GRA openings are available in the above areas and more starting Fall 2020. Apply here.

Select research projects with opportunities for student participation can be found here.

Introduction to Physical Oceanography

Physical oceanography is the study of the physics of the ocean. This encompasses a very broad range of processes that can be characterized by the time and space scales over which they vary. On the rapidly varying end of the scale, there are turbulent eddies with durations of seconds and spatial scales of centimeters. At somewhat longer scales, there are propagating surface and internal gravity waves with periods of seconds to hours and wavelengths of meters to kilometers. Astronomical forces generate tides which propagate on the rotating earth as waves with periods predominantly near 12 and 24 hours and wavelengths of thousands of kilometers. At intermediate scales, there are horizontal eddies, fronts and coastal currents that vary on time scales of days to months and spatial scales of one to hundreds of kilometers. At the slowly varying end of the scale there are wind-forced and thermodynamically driven ocean currents with time scales of days to centuries and spatial scales of tens to thousands of kilometers. Transfers of momentum, heat and salt occur within the ocean and across the air-sea interface on all of these space and time scales.

One of the intriguing aspects of physical oceanography is the overlap and interaction between the various physical processes. For example, processes that occur on very short and intermediate scales determine the water motion, temperature, salinity and other properties on very large scales. Large-scale water properties in the ocean are mixed by turbulent eddies that occur on vertical scales of centimeters and seconds and horizontal scales of kilometers and days. Vertical turbulent mixing can be enhanced by the cascade of energy from internal gravity waves that have vertical and horizontal scales of tens of meters and hours. A primary mechanism for the generation of internal waves is the interaction of ocean tides with bottom topography. It is thus apparent that a comprehensive understanding of the large-scale ocean circulation requires consideration of the full range of physical processes occurring in the ocean.

Physical oceanographic research conducted by OSU faculty includes the development of specialized instrumentation, deployment and retrieval of these instruments at sea and processing of the data collected by the instruments. It also includes analysis and interpretation of the observations within a comprehensive theoretical framework that has been developed over the past century. The vastness of the ocean makes it impractical to measure the ocean directly over the broad range of important space and time scales. In-water observations are therefore supplemented with global satellite-based observations of a large number of oceanographic variables (e.g., the sea surface height, surface currents, sea surface temperature and surface winds). Analytical and numerical models are used to interpret the in-water and satellite observations, yielding an improved understanding of ocean dynamics and thermodynamics. Physical oceanographic observations and models are also used to investigate the interaction between physical oceanography and ocean biology, chemistry and geology, as well as air-sea interaction.

The Physical Oceanography course curriculum at OSU reflects the diversity of research projects conducted by OSU faculty members.